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Abstract: Detecting and diagnosing surface defects is critical throughout the production process. The detection of these
defects with high precision plays a major role in preventing both financial and temporal losses. Recently, image
processing, machine learning, and deep learning-based approaches have made great progress in surface defect detection.
Therefore, in this paper, a new approach called Attention Residual Dilation Squeeze and Excitation U-net (ARdiSE-U-
net) is proposed for surface defect detection. The suggested method includes an encoder and decoder, which are the key
components of the Unet structure, a depth-wise compression and stimulation block summed to the Unet's skip
connections, and a hybridization of attention residual blocks. A model created by applying multiple improvements on
the classical U-Net architecture is described. The model integrates attention mechanisms, residual blocks, dilation
applications, and Compression-Evoked (SE) blocks. This combination aimed to improve the segmentation performance
and provide deeper feature extraction. In this way, critical information is extracted. Lastly, pixel-stage flaw detection is
designed with the help of the sigmoid function in the output layer. In the developed model, MT dataset is used for
magnetic surface flaw detection. In the experimental studies, Accuracy, Mean loU, AUC, MAE results of the developed
ARAdiSE-U-net architecture are 0.9893, 0.8128, 0.8936, 0.0099, respectively. It has higher performance metrics than
most of the baseline studies.
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1. INTRODUCTION

The detection of surface defects (DSD) is vital in the manufacture of materials and machine components. This
is important for both manufacturers and customers. Products free from surface defects will increase the trust
of customers and manufacturers towards each other and, at the same time, increase standards. For this reason,
removing surface defects in industrial areas such as steel, textiles and marble are very important due to
customer satisfaction and increased manufacturer reliability. However, today surface defects are detected
manually by humans. Detection performance can be limited due to negative effects such as fatigue and lack of
attention. For this reason, unmanned DSD has recently become a popular topic in the literature. At these stages,
various image processing techniques are used to reduce the negative effects on humans.

Researchers apply image processing techniques such as using the grayscale value and slope edge, wavelet [1],
curvelet [2], and shearlet [3, 4] transformations. At the same time, classic machine learning and image
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processing approaches including thresholding [5], gradient [6], morphological filters [7, 8], grey level co-
occurrence matrix [9], Fourier [10], and Gabor [11] have been employed to identify surface defects. Deep
learning has gained popularity in surface defect identification in recent years and has demonstrated
encouraging results in classification challenges [12-14].

This success is due to the ability of deep learning algorithms to automatically extract effective features through
convolutional and nonlinear activation layers [1, 15, 16]. In automatic damage detection for magnetic tiles,
patterns are often presented which, due to the diversity of defect shape, texture complexity, and illumination
conditions, become noises in greyscale images. Since there is a lot of randomness in these patterns, image
detection tasks may encounter difficulties. A lot of deep learning models are developed for the detection and
prediction of these error patterns. In the first proposed methods, surface defects are presented as present or
absent [3, 17]. These proposed methods have achieved high success, but they have not been able to detect and
identify the location of surface defects. Some studies have tried to classify the defective parts in the mentioned
defects [15, 16]. Nevertheless, these approaches are extremely inefficient since they employ separate CNN
models for every defect class. In the literature, the models with the most successful results in both defect
classification and localization are segmentation-based fully convolutional network (FCN) models [1, 18]. As
opposed to the classical CNN models, FCN network models do not have fully connected layers. In these
models, a convolution layer acts as the output stage. In this way, pixel-based segmentation is achieved. In
particular, FCN models with skipping connections such as Unet [18] and FPN [19] architectures, are used in
the literature [1, 20, 21]. Thanks to the skip-connection properties of these architectures, it is possible to use
spatially detailed and difficult-to-obtain features such as shapes, textures, and colors in defect detection.
Thanks to these features, segmentation architectures have achieved high success in defect detection.

Among the segmentation algorithms, U-net features are often preferred. The U-net [18] model includes two
parts: encoder and decoder. The encoder block includes the convolution and pooling layers of a classical CNN
structure. The decoder block contains an upsampling layer instead of a pooling layer. In this way, the feature
maps processed by decreasing their dimensions in the encoder block are processed by increasing their
dimensions. In U-net models, skip connections merge low-level characteristics covering spatial details in the
initial layers with high-level characteristics covering semantic details in the final stages. Thanks to these
processes, U-net models have begun to be used frequently for the DSD where location information and pixel
diversity are very important [22, 23]. Huang et al. [23, 24], proposed the U-net based MCuePushU network
architecture for magnetic tiling DSD. Junfeng et al. [24] combined MobileNetV2 network with U-net and
applied it to fabric DSD. Damacharla et al. [22] merged Denesenet and ResNet with the U-net model
employing an equivalent method. Luo et al. [25] modified the pre-trained VGG network and LSTM
architecture to the Unet system and achieved successful results. One of the main reasons why U-net based
model architectures are good at segmentation is that they directly combine low and high-level features.

However, this fusion process also has disadvantages, for example, although low-level feature maps are good
for DSD, they may suppress high-level features. In some studies in the literature, some methods have been
used to avoid the above problem. One of these methods is to use compression-excitation models [26]. In this
way, meaningful information is emphasized. In other studies in the literature, attention gates are used [20, 27-
29]. In the last referenced studies, attention blocks and different features have been tried to be combined
effectively. However, as mentioned above, in order to prevent the loss of low-level features, low-level features
are weighted with a gating mechanism. This process uses a depth separable convolution [30], based
compression-excitation structure [31, 32].

In our study, successful results were obtained with the ARdiSE-U-net architecture we proposed for magnetic
surface defect detection. The devoloped model was tested on the MT dataset. In the experimental results,
ARdiSE-U-net achieves better results than the average of the basic studies. In this study, the contributions of
the ARdiSE-U-net model developed for magnetic surface defect detection are as follows:

- The compression-excitation block (SE) is hybridized into the main structure to detect surface defects and to
improve performance.

- ARdiSE-U-net architecture is proposed for surface defect detection, and it is introduced for the first time in
this study.
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- The proposed ARdiSE-U-net model is tested on the MT dataset, which is frequently seen in academia.

The experimental findings of the generated model have a validation accuracy score of 0.9893, a validation
mean IoU score of 0.8128, and a validation MAE score of 0.0099.

the rest of the paper is organized as follows. Section 2 describes the proposed ARdiSE-U-net architecture;
section 3 discusses the implementation details and experimental results, and section 4 presents the conclusion.

2. THE PROPOSED METHOD

This paper proposes an attention residue expansion compression and excitation unet (ARdiSE-U-net)
architecture for pixel-level DSD.

2.1. Attention Block

The attention mechanism used in this study allows the features from the input and transition tensors to be
rescaled using the attention map. The input and transition tensors are reduced to intermediate dimensions by
1x1 convolutions. An attention map is obtained by applying sigmoid activation to these collected features.
Important features are highlighted by multiplying this map with the input tensor. Mathematically, the
mechanism is expressed as follows:

0, =Wy *x (1)
bg=Wp*g (2)
f = ReLu(6y + ¢y) 3)
Yr = oWy *f) “4)
£ = x. 1y (5)

where:

0, x transformed into intermediate features

¢g4: g transformed into intermediate features

Wy ve W @ 1x1 convolution weights

f: Activated intermediate feature

o Sigmoid function

W,,: Weights forming the attention map

Yr: [0,1] Attention map with values in the range [0,1]

Figure 1 shows the architecture of the attention block used.
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Figure 1. Attention block architecture
2.2. Residual Block with Dilated Convolution

This residual block enables more efficient feature learning using dilated convolution and skip connection. Skip
connection allows gradients to propagate more efficiently by preserving the information flow between input
and output. Furthermore, the use of dilated convolution expands the detection area without increasing the
kernel size. It can be expressed by the following mathematical equations.

s = BN (W, * x) (6)
y1 = ReLu(BN(W; * x)) (7)
Y2 = BN(Wz * y1) ®)
y=Y2+s )
y = ReLu(y) (10)

where:

x: Input tensor

W;: 1x1 convolution weights

BN: Batchnormalization

s: Converted input (Shortcut)

W, : Weights of the first 3x3 extended convolution

W,: Weights of the second 3x3 extended convolution
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ReLu: Activation function

Figure 2 shows the architecture of Residual Block with Dilated Convolution.

(None, 64, 64, 64) (None, 64, 64, 64)

. Input
. Conv2D
—_ e
—7_,,_,_7_7_7_7_1_ . Batchnormalization
% 7-‘1-'-"""-—-‘
/ “‘\.
/ -
/ ™
/ B
/
/
/

\

(None, 64, 64, 32)

A\
. . . ) (None, 64, 64, 32) (None, 64, 64, 32)
RESIDUAL BLOCK WITH DILATED CONVOLUTION ° °

(None, 64, 64, 64)

/
/
/
J/
7 o—’ N
(None, 64, 64, 64) ° Activation

(None, 64, 64, 64) (None, 64, 64, 64)  (None, 64, 64,64)
Figure 2. Residual block with dilated convolution architecture

2.3. Squeeze and Excitation Block
Squeeze-and-Excitation (SE) Block is a mechanism that enables the rescaling of channel sizes within a deep
learning model using the attention mechanism. It is introduced in the paper “Squeeze-and-Excitation
Networks” [31]. SE Block consists of three basic steps: Squeeze, Excitation, and Rescaling.
2.3.1. Squeeze Layer
In this step, the statistical information of each channel in the spatial dimension is compressed, taking into

account the channel dimensions. This is performed using Global Average Pooling (GAP). For each channel c,
the compressed value is calculated as follows:

w

e = ﬁizxc(i.j) (n

i=1j=1
where:

X.(i,)): pixel value at position (i,j) in channel c.
H: Height of the input

W: Width of the input

Z.: compression representation of channel ¢

There will be a global feature vector z = [y, 23, ..., Z.] for all channels of the inputs.
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2.3.2. Excitation Layer

In this stage, the compression result z is passed through an attention network to rescale the channel dimensions.
Two fully connected layers and an activation function are used:

s = o(W,6(W,2)) (12)
where:
Cc
wy eR™¢: Weights of the first fully correlated layer (compression)

W,eR Cx%: Weights of the second fully correlated layer (Expansion)

r: Compression ratio

6: ReLu activation function

o Sigmoid activation function

s € R¢: channel weight vector

This process produces a vector s for rescaling the channel dimensions using the attention network.
2.3.3. Scale Layer

At this stage, the resulting s vector is multiplied by the input tensor (X). This multiplication increases or
decreases the importance of each channel in the original tensor:

X, =5s..X, (13)
where:
X.: Rescaled channel
s.: Weight for channel ¢

X.: The c-th channel of the input tensor

SE Block is usually added in CNN-based models. SE Block is applied to the feature maps resulting from filters
in a CNN layer. This process allows the network to focus more on certain features by adding channel-based
attention. It also increases the importance of certain features by adding a channel-based attention mechanism.
SE Block adds a small computational load and has a lightweight structure. Its shape is given in Figure 3.
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2.4. ARdiSE-U-net Architecture

The U-Net model is widely used in deep learning-based image segmentation due to its architecture and
effective customization possibilities. In this paper, we describe a model created by applying multiple
improvements to the classical U-Net architecture. The model integrates attention mechanisms, residual blocks,
dilation applications, and compression-aware (SE) blocks. This combination aims at improving segmentation
performance and enabling deeper feature extraction. This architecture consists of several stages. These are the
encoder layer, bottleneck layer, decoder layer, and output layer. In the encoder layer, residual blocks and
dilated convolutions are used to extract important features from the image. SE blocks highlight important
information in the feature maps by applying spatial and channel-based attention mechanisms. In the bottleneck
layer, larger filter sizes and widening ratios are used for deep feature extraction. In the decoder layer, attention
blocks are added with up-sampling operations. These blocks enable more precise segmentation by utilizing the
feature maps at the corresponding encoder level.

In the output layer, pixel-level output is obtained by using a 1x1 convolution layer with sigmoid activation for
segmentation. In the output layer, dice loss, the loss function whose equation is given below, is used.

Dice Loss — 1 2JANBI+€ (14)
Lce LOSS = |A|+|B|+E

This model aims to achieve better results in image segmentation by enriching the powerful structure of U-Net
with modern deep learning components. In particular, the integration of attention mechanisms and SE blocks
increases the focusing and learning capacity of the model. Expansion and residual blocks improve context
information and learning stability. Figure 4, Figure 5 and Figure 6 illustrate the proposed architecture.
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2.5. Proposed ARdiSE-U-net Training Procedure

In deep learning studies involving methods such as segmentation and classification methods, the effect of the
size of the data set on performance is very important. Overfitting or underfitting problems are frequently
encountered in small data sets. In order to eliminate these problems, transfer learning or data augmentation
(DA) methods are used [24, 33]. DA methods include methods such as flipping, mirroring, cropping,
expanding, and playing with color tones. In this study, in order to increase the effectiveness of the proposed
ARdiSE-U-net method, only inversion is used.

3. IMPLEMENTATION DETAILS

The dataset we used in the experimental study is [23]. This dataset was used to DSD at the pixel stage and to
compare the performance of the based methods with the proposed model. The proposed model in the study
was developed and implemented on the Python platform using TensorFlow-Keras libraries. The variables that
were utilized during the training step of the system we created are listed below:

- The batch size is 16.

- Learning rate is 0.001.

- Loss function is Dice Loss function

All stages of all models used in this article were run with identical settings. Also, during the experimental
research, mloU (Mean Intercept over Unity), accuracy score, AUC (Area Under ROC Curve), and MAE (Mean
Absolute Error) metrics were used to observe the performance of the developed model.

3.1. Dataset

In this study, the MT [23] dataset was used to evaluate the model performances. There are 1344 images in total

in 5 different types on magnetic tile surfaces in the MT dataset. All images from the MT dataset are utilized in
experiments. In experimental studies, the training and testing rates of the MT dataset are 80% and 20%,
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respectively. Additionally, every image in the dataset was scaled to 64 x 64 pixels. DA was applied to the
dataset in order to improve model success rates. Also, the data was translated and doubled.

3.1. Experimental Results

The system we used in our study has 16 GB RAM and 6 GB GTX1060 graphics card. The experimental results
and graphs in this study are presented below.

The images in the MT dataset have small surface defects and were recorded under different lighting conditions.
Therefore, the estimation and DSD are difficult. Figure 7 shows the performance of our proposed architecture
on the MT dataset with the original image, real mask, predicted mask, and segmented images.

Original Image
MT_Blowholelimgs Real Mask Predicted Mask

Qriginal Image
MT_Break\imgs

Segmented Image

Real Mask Predicted Mask Segmented Image

Original Image

MT_Crack\imgs Real Mask Predicted Mask Segmented Image

Original Image
MT_Fray\imgs Real Mask Predicted Mask

© 2025 The Author(s). This work is licensed under CC BY-NC 4.0 | https://creativecommons.org/licenses/by-nc/4.0/ www.tesjournal.com

Segmented Image


https://creativecommons.org/licenses/by-nc/4.0/

TES JOURNAL 17

Original Image
MT_Freelimgs Real Mask Predicted Mask Segmented Image

Original Image
MT_Uneven\imgs Real Mask Predicted Mask Segmented Image

Figure 7. Original image, real mask, predicted mask, and segmented images of our proposed architecture

Our proposed architecture preserves the important features obtained from small areas and carries these features
to the last layer. In this way, the developed model has high performance compared to most of the baseline
models. Furthermore, the Attention-Residual-dilation network built to reinforce the characteristics in Unet's
skip connection has exhibited low performance only in lines 2 and 4 of Figure 7. Figure 7 shows successful
segmentation results in the remaining rows. Table 1 below shows the accuracy, mean loU, AUC, and MAE
metric results of the test results. In addition, accuracy, mean loU, ROC, MAE, and loss graphs are also shared
in Figure 8(a-e), respectively.

Table-1. Model performance comparison on literature

Methods Accuracy Mean IoU AUC MAE
[34] - 0.8051 - ;
[23] - - 0.985 0.002
[35] - 0.6694 - -
[36] - - - 0.0240
[28] - 0.7131 -

[27] - 0.7370 - -
[37] - - - -
Proposed 0.9893 0.8128 0.8936 0.0099

method
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Figure 8. Accuracy, mean IoU, ROC, MAE, and Loss plots of the developed model

When Table 1 and Figure 8 are analyzed, and the given metrics are considered, the best result in accuracy,
mean loU metrics, belongs to our proposed model. This proves the effectiveness of our proposed model in
segmentation and magnetic surface defect detection.

4. CONCLUSION

In this study, ARdiSE-U-net is proposed for pixel-stage magnetic SDS. The basic structure of the developed
architecture includes Depth Based Compression and Excitation Block between encoder and decoder skip
connections of Unet network. In the model, the detail elements extracted from encoder block are transferred
to decoder block while critical details are improved for DSD. Attention-residual layers have also been added.
The attention mechanism allows the model to learn that certain regions of an image are more important.
Especially in pixel-level tasks such as segmentation, the model needs to process different regions in different
ways. It emphasizes important regions of the image (e.g. boundaries of objects or regions of interest). It reduces
the influence of unimportant or distracting regions. It is especially helpful in distinguishing between different
classes with similar colors and textures. Residual connections have been used in deep learning models to solve
the vanishing gradient problem and facilitate the model to learn deeper layers. In segmentation tasks, it allows
the information learnt in previous layers to be carried to the next layers. It helps the model to learn faster and
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more consistently. It also ensures that information from earlier layers is preserved, especially in segmentation
tasks where fine details are important. The Attention Residual layer optimizes both attention weighting and
information flow by combining the attention mechanism and residual connections. Experimental results show
that our proposed architecture generally produces better results than the baseline studies. This work is expected
to shed light on future studies. In this study, a new model, ARdiSE-U-Net, is introduced for the pixel-level
DSD. In the proposed architecture, the performance is improved by adding Depth-Based Compression and
Excitation Block to the connections between the encoder and decoder layers of the U-Net network.
Experiments have shown that this architecture generally provides better results than previous methods. The
aim of the study is to provide a guiding basis for future research.
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